388 research outputs found

    Predicting outcome in adults with status epilepticus

    Get PDF
    Status epilepticus (SE) is a life-threatening state of persisting or repetitive seizure activity with often permanent altered level of consciousness. Despite its high morbidity and mortality there is no consensus about the best strategy to treat specific forms of SE. The compromise between the danger related to untreated and persistent seizure activity and the possible damage induced by unnecessary aggressive treatments is challenging. Knowledge about the determinants and reliable prediction models of outcome early in the course of SE is fundamental for rapid treatment modulation and for planning the level of monitoring. This review compiles the current evidence for outcome prediction based on clinical determinants in adult SE patient

    Dormant Tumor Cell Vaccination: A Mathematical Model of Immunological Dormancy in Triple-Negative Breast Cancer.

    Get PDF
    Triple-negative breast cancer (TNBC) is a molecular subtype of breast malignancy with a poor clinical prognosis. There is growing evidence that some chemotherapeutic agents induce an adaptive anti-tumor immune response. This reaction has been proposed to maintain the equilibrium phase of the immunoediting process and to control tumor growth by immunological cancer dormancy. We recently reported a model of immunological breast cancer dormancy based on the murine 4T1 TNBC model. Treatment of 4T1 cells in vitro with high-dose chemotherapy activated the type I interferon (type I IFN) signaling pathway, causing a switch from immunosuppressive to cytotoxic T lymphocyte-dependent immune response in vivo, resulting in sustained dormancy. Here, we developed a deterministic mathematical model based on the assumption that two cell subpopulations exist within the treated tumor: one population with high type I IFN signaling and immunogenicity and lower growth rate; the other population with low type I IFN signaling and immunogenicity and higher growth rate. The model reproduced cancer dormancy, elimination, and immune-escape in agreement with our previously reported experimental data. It predicted that the injection of dormant tumor cells with active type I IFN signaling results in complete growth control of the aggressive parental cancer cells injected at a later time point, but also of an already established aggressive tumor. Taken together, our results indicate that a dormant cell population can suppress the growth of an aggressive counterpart by eliciting a cytotoxic T lymphocyte-dependent immune response

    Role of multiple subband renormalization in the electronic transport of correlated oxide superlattices

    Full text link
    Metallic behavior of band-insulator/ Mott-insulator interfaces was observed in artificial perovskite superlattices such as in nanoscale SrTiO3/LaTiO3 multilayers. Applying a semiclassical perspective to the parallel electronic transport we identify two major ingredients relevant for such systems: i) the quantum confinement of the conduction electrons (superlattice modulation) leads to a complex, quasi-two dimensional subband structure with both hole- and electron-like Fermi surfaces. ii) strong electron-electron interaction requires a substantial renormalization of the quasi-particle dispersion. We characterize this renormalization by two sets of parameters, namely, the quasi-particle weight and the induced particle-hole asymmetry of each partially filled subband. In our study, the quasi-particle dispersion is calculated self-consistently as function of microscopic parameters using the slave-boson mean-field approximation introduced by Kotliar and Ruckenstein. We discuss the consequences of strong local correlations on the normal-state free-carrier response in the optical conductivity and on the thermoelectric effects.Comment: 11 pages, 4 figure

    Multiple Magnon Modes and Consequences for the Bose-Einstein Condensed Phase in BaCuSi2O6

    Full text link
    The compound BaCuSi2O6 is a quantum magnet with antiferromagnetic dimers of S = 1/2 moments on a quasi-2D square lattice. We have investigated its spin dynamics by inelastic neutron scattering experiments on single crystals with an energy resolution considerably higher than in an earlier study. We observe multiple magnon modes, indicating clearly the presence of magnetically inequivalent dimer sites. This more complex spin Hamiltonian leads to a distinct form of magnon Bose-Einstein condensate (BEC) phase with a spatially modulated condensate amplitude.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let

    Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    Full text link
    The recent discovery of pressure induced superconductivity in the binary helimagnet CrAs has attracted much attention. How superconductivity emerges from the magnetic state and what is the mechanism of the superconducting pairing are two important issues which need to be resolved. In the present work, the suppression of magnetism and the occurrence of superconductivity in CrAs as a function of pressure (pp) were studied by means of muon spin rotation. The magnetism remains bulk up to p3.5p\simeq3.5~kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at pp\simeq7~kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc1.2T_c \simeq 1.2~K which decreases upon increasing the pressure. In the intermediate pressure region (3.5p73.5\lesssim p\lesssim 7~kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (TcT_c) and of the superfluid density (ρs\rho_s). A scaling of ρs\rho_s with Tc3.2T_c^{3.2} as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.Comment: 9 pages, 8 figure

    Spin-Orbit-Induced Orbital Excitations in Sr2RuO4 and Ca2RuO4: A Resonant Inelastic X-ray Scattering Study

    Get PDF
    High-resolution resonant inelastic X-ray scattering (RIXS) at the oxygen K-edge has been used to study the orbital excitations of Ca2RuO4 and Sr2RuO4. In combination with linear dichroism X-ray absorption spectroscopy, the ruthenium 4d-orbital occupation and excitations were probed through their hybridization with the oxygen p-orbitals. These results are described within a minimal model, taking into account crystal field splitting and a spin-orbit coupling \lambda_{so}=200~meV. The effects of spin-orbit interaction on the electronic structure and implications for the Mott and superconducting ground states of (Ca,Sr)2RuO4 are discussed.Comment: accepted in PRB 201

    Specific Heat Study on a Novel Spin-Gapped System : (CH_3)_2NH_2CuCl_3

    Full text link
    Specific heat measurements down to 120mK have been performed on a quasi-one-dimensional S=1/2S=1/2 spin-gapped system (CH3_3)2_2NH2_2CuCl3_3 in a magnetic field up to 8 T. This compound has a characteristic magnetization curve which shows a gapless ground state and a plateau at 1/2 of the saturation value. We have observed a spontaneous antiferromagnetic ordering and a field-induced one below and above the 1/2 plateau field range, respectively. The field versus temperature phase diagram is quite unusual and completely different from those of the other quantum spin systems investigated so far. In the plateau field range, a double-structure in the specific heat is observed, reflecting the coexistence of ferromagnetic and antiferromagnetic excitations. These behaviors are discussed on the basis of a recently proposed novel quantum spin chain model consisting of weakly coupled ferromagnetic and antiferromagnetic dimers.Comment: 4 pages, 3 figures, submitted to J. Phys. Soc. Jp
    corecore